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OPTIMUM SHAPE FOR SINGLE EMISSION ELEMENTS
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Optimum laws of variation in cross-sectional areas cooled by emis-
sion from solid and hollow radiation elements of various shapes are
found.

for given initial heat flux Q¢ and temperature T (Fig.
1a).
We introduce the nondimensional variables

1. Let us consider the problem of designing an op- - Q0 = T Qhh \Ys
timum radiation-cooled heat-conduction pin of mini- Q= _Q—; T = T EEX / (m) ;
: 0 0
along I-T

- 2 vy o 5p2 Y,
y=y/(__go_5)3; V=v/(ik:__”_)3.
J\ekkAToo Actet KaTh (5)

In these variables Egs. (2)—(4) are written in the form:

g
y dx < ()
y Thdx = —dQ; (7
_ ;L_a
V=g ®
0

At the end of the pin when X = X7 we know only the
value of the variable @ = 0, and it is therefore advis-
able to express all of the variables as a function of 5
Expression (8) is then rewritten as

0 —
— 1 _
V=—S( Q_ )/”dQ )
—16 4T
1 T —
dQ
and the formulated problem will correspond to the sought

minimum of the functional (9) whose Euler equation
will have the form

Fig. 1. Various shapes for single emitting elements:
a) longitudinal cross section of heat-conducting pin;
b and c¢) examples of its cross sections; d) longitidinal
cross section of hollowpin; e) longitudinal cross sec-
tion of heat-conducting element with constant peri-
meter; f and g) examples of lateral cross sections _

of a hollow pin and of a heat-conducting element with d°T 16 (d7)2 1 dT 0 (10)
4QdQ

dQ

dQ

a constant perimeter. dQ2 T

mum weight whose area and cross-sectional perimeter The general solution of this equation is written in the
would be defined by the equalities (Fig. 1a): form
5
Febafs T=ly W Tec,@* +C)T. (11)
We will consider rather long pins for which the

equation of heat transfer along the pin and the law go-
verning thermal radiation are valid in the following
form:

For the optimum pin contour it follows from the nat-
ural limit boundary condition at the right-hand e1_1_d
that C; = 0. At the base of the pin we must have Q = 1

T and T = 1, and therefore C; = 1.

kyt) = Q (2) Thus considering (6)—(8), we have the following re-
o lationships characterizing the optimum pin:
kyy g0 THdx = — dQ. (3)
5 33
The optimum relationship y(x) must ensure mini- T Qﬁ; F=258(1 — 6%4);

mum pin volume 50

x _ X 61
V= J kyrdx (4) T (1— 2.58) ; (12)
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; )T .
- 3 Vo = 1.91. (12)
pt
2.58 (cont'd)

;-2.39(1—

The various transverse cross-sectional shapes will
be defined by the coefficients k; and ky. For example,
having substituted k{ = 7 and ky = 27 into the above-
cited expressions, we obtain the relationships for an
optimum pin with a circular transverse cross section
(Fig. 1b). Solution (12) coincides in this case with the
result derived in [1] in the optimization of pins with
circular transverse cross section and an exponential
distribution of temperature along the plane. If ky = ¢
and ko = 2(1 + £), we will have a pin with a rectangular
cross section and a side ratio equal to ¢ (Fig. 1c), ete.

We note that all of the results obtained above are
also valid for hollow pins (Fig. 1d) in which there is
no radiative heat exchange between the inside surfaces,
and the wall thickness ¢ changes according to a defi-
nite law along the pin. For example, for a circular pin
(Fig. 1f) the ratio (y — §)/y must be constant. Here

klzn[1—<5’;y‘3)a]; ky = .

For a pin with a rectangular profile whose sides
are a and ta long (Fig. 1g) it is necessary that

Here

ky=2(1+0).

We also note that the effectiveness of the optimum
pin is independent of the shape of its lateral cross
section

pt
kyy o Todx = 0.706. (13)

@:Qo/ 51_0

However, the ratio of the removed flux to the weight
of the pin is a strong function of the cross-sectional
shape of the pin

L '
3

g, 1 rotet T e
G, 191 ( 20) (k_z) ' (14)
P Tl Q 1

Relationship (14) shows in particular that when the
values of Qg, A, and Ty are fixed, a solid pin with a
lateral cross section in the form of a circle exhibits
the smallest value for Qy/ Gp-

The results obtained above pertain to extremely
pointed pins (when x = Xy, opt’ ¥ = 0 and the firstthree
derivatives of y with respect to x are equal to zero),
as well as to the zero temperature TL' Let us exam=-
ine the class of optimum pins for Ty, #0. Here the
function T{Q) is written as

a7 A

T)Q +7.]7, (15)

T=[(1—-7.)Q
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while the contour shape is defined by the following
system of equations:

_3/4 — _b/4 17 . —:%
yﬁ _(685)Q [(1—T)Q +T.]
17
(1—T.)
1

X=—(68/5) ° x

; (16)

! % i
AT =TT + T Ta—T)74q. 17

Hl"}{ol

The effect of T, on the volume of the optimum pin is
— _92 7
V=s1ydx=—‘~/ip—t—- (18)

The results obtained in calculating the optimum
contours for pins with various values of Ty, are shown
in Fig. 2 (Sidorenko did the calculations). We note
that when T, # 0 near the end of the pin, the derived
solutions must naturally be refined, since the condi-
tion of a flattened contour is not satisfied there.

Let us compare the considered optimum pins with
conical pins (the dashed lines in Fig. 1a). The area
and perimeter of the lateral cross section in this case
will be determined by Egs. (1) in which y is defined in
terms of x:

=L" t_(l‘"
¥ = x)g2 (19)

With consideration of (18), Egs. {2) and (3) lead to
the differential equation

I -/ T _4
C—3)——— 29 _NT=, (20)
Xc X
where

— - x 3.7
Fe=, L=, yo Tk (21)

X *L Akgtg =

2

(xi is the length of the truncated cone, see Fig. 1a).
The boundary conditions for Eq. (20) may be assumed
to be

dT
dx,

T =1 when x,=0; =0 as L-—1 (22

A solution for (20) was derived numerically on a
computer. The effectiveness of the conical pin as a
function of N

*L
ec=Q.U fa(l— 2t e Tédxr (23)
0

is shown in Fig. 3 (Potapov did the calculations).
These relationships are valid for conical pins having
any lateral cross-sectional shape (if there is no self-
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irradiation) and these relationships remain in force
as well for hollow conical pins in which there is no

g —
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Fig. 2. Optimum pin contours for
various values of T,: 1) TL 0;
2) 0.8; 3) 0.9; 4) 0.95.

radiative heat exchange between the inside surfaces,
and in which the wall thickness 6 varies along the pin
according to a specific law. For example, for a cir-
cular conical pin we must have

e const

L—x)tg >
( x)g2

Here

=n{l——-[1-i—_—;—té§]z}; ky = 2m.

Optimizing the dimensions of the conical pin, as was
done by means of the function shown in Fig. 3, de-
monstrated that Nopt = 0.6 and that for identical values
of Qy, Ty, €, and A, as well as of k; and ky, the opti-
mum conical pin is heavier by only 1.5% than the opti-
mum pin.

2. Let us consider the problem of designing the
heat-conducting radiating element shown in Fig. le
whose area and perimeter of lateral cross section
would be defined by the equalities

F = kg Il =k, (24)

where # is a function which depends on the law govern-
ing the change in wall thickness § along the x-axis.

We will assume that there is no transfer of heat
between the inside surfaces. The heat-transfer equa-
tion for the subject emitter with a constant outside
lateral cross-sectional perimeter and the law of ther-
mal emission are wriiten in the form

s%_‘fix_ -—Q (25)

kyeoThdx = —dQ. (26)
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The optimum function $(x) must ensure a minimum
volume for the subject emitter

V= | kvpdx (27)

OL’—d h)(

for given initial heat flux Q and temperature Ty (Fig.
le).
We introduce the nondimensional variables

iz"/(eog‘%m )
"’/(xkkmn)'

. Q3
V= V/ (_i“ . (28)
Ae2a2 TS kL

In these variables (25)—(27) are written in the form

- dT

wa‘ =—Q (29)
T di = —d3G; (30)
*
Ve | $ax (31)
Q

At the end of the element (when X = xL) we know the
value only of the variable Q = 0, and we will therefore
express all of the variables as a function of Q. After
this expression (31) is rewritten as

QdQ
m@_ (32)
ik

and the formulated problem will correspond to the
seeking of a minimum for the function (32) whose Eu-
ler equation will have the form

V=—

1

4 (‘E)Z 7y, (33)
dQ dQ

Equation (33) corresponds in terms of form andbound~

ary conditions to the condition derived in [2] and which

must be satisfied for a solitary infinite longitudinal

fin of optimum shape. Using the results of [2], we will
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Fig. 8. Effectiveness of conical
pinas a function ofheat-conduc-
tion parameter N.

therefore derive the following relationships character-
izing the optimum shape of the subject element:
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7=2"% = (1-%], _T=(‘~“-3—) :

- AL
$=6l1—F] 3 Vop=4 Zgu=3 (34)

The various shapes for the lateral cross section of
the subject element will be defined by the coefficients
ks and k4 and the form of the function ¥(x). For exam-
ple, if the subject emitting element is a tube having an
outside radius v (Fig. 1f),

—§\2
ky=my? ky=2ny, 'lp(x)=1““(y—;—*)

It is not difficult to prove that the condition 6 =y in
this case is expressed by the relationship

6Q% / I y® heo Ty < 1. (35)

However, if the subject element is rectangular in cross
and if the relationship of its sides is expressed by £
(Fig. 1g), we will have

=2a(l+E)

o= [e=(1 =) (2]

The effectiveness of the subject element is indepen-
dent of the shape of the lateral cross section

Lopt .
8 = Qo/ ) kyec Todx = 0.333. (386)
) :

The derived results pertain to extremely pointed
right-hand emitter edges (when x = X1, opts #(x) andthe
first three derivatives of 3 with respect to x vanish),
as well as to the zero temperature TL However, if
m Fig. 2 of [2] we take 7 instead of y and assume that
X = —x, we will obtainthefunctions for the construction
of the subject emitters when T1, = 0. Inparticular, the
effect of T1, on the volume of an emitter with an opti-
mum law 6(x) will be expressed by the relationship

— M (37)

Vopt (TL (1 T )
—iL

+0!

The weight ratio for the optimum emitters consid-
ered in sections 1 and 2 for identical values of Q, Ty,
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A, € and identical shapes of lateral cross sections and
dimensions with x = 0 will be defined as

G 2.09 Qs I3 1 g3\ 12
p 4 a'e" 1y i

Thus an emitter with a constant outside lateral
cross-sectional perimeter is considerably lighter than
the optimum pin.

NOTATION

Here F and Il are the area and external cross-section
circumference of the radiating element at a distance x
from its base; y is the quantity depending on x and
having the dimension of length; ¥ is a dimensionless
value; k; and k; are dimensionless quantities indepen-
dent of x; ks and k, are dimensional quantities inde-
pendent of x (ks has the dimension of area, k, of length);
Qg is the heat flux from the radiating element; Q is
the heat flux along the element at a distance x from its
base; A is the thermal conductivity; Ty, T, and Ty are
the temperatures at the element base, at a distance x
from the base and at the right-hand endof the element;
& is the emissivity of the surface; ¢ is the Stefan—
Boltzmann constant; V is the radiator volume (V0 ¢ 18
the volume of the optimum radiatior); & is the wall
thickness; x1, is the radiator length (X, opt is the length
of the optimum radiator); v is the specific weight; ®,
@, and @y, are the effectiveness of optimum pin,
conical pin, and radiator with constant external cir-
cumference; Gp and Ggp, are the weight of ‘the pin and
the emitter with constant external circumference; o is
the angle between the generatrices of the conic surface
in the longitudinal section of the pin by a plane; T and
Q are the dimensionless temperature and flow rate,
respectively; X, y, and V are dimensionless variables
in the study of optimum pins of minimum weight; x.
and N are the dimensionless variable and parameter
of thermal conductivity with conical pins; X, ¥, and \%
are dimensionless variables for the emitter with con-
stant external circumference; a and ¢a are the dimen-
sions of the sides of the radiator cross-section.
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